100款禁用黄免费a尿道口_大象出版社网站_伊园麻园2024直达2024入口

热点关注:  
放射性同位素 粒子加速器 辐照杀菌 无损检测 高新核材 辐射成像 放射诊疗 辐射育种 食品辐照保鲜 废水辐照 X射线 中广核技 中国同辐

泰雷兹回旋加速器创下等离子体加热新纪录

2024-10-30 09:19          核技术回旋加速器

近日,泰雷兹公司的TH1507U回旋加速器在Wendelstein 7-X仿星器项目中取得了重要里程碑。该回旋加速器是为Wendelstein 7-X仿星器专门开发的,由泰雷兹公司与马克斯普朗克等离子体物理研究所合作完成。在360秒内,它以140千兆赫的频率实现了1.3兆瓦的射频总输出,创下了等离子体加热的新纪录。

回旋管是一种高功率线性束真空管,通过强磁场中电子的回旋共振产生毫米波电磁波。在Wendelstein 7-X项目中,泰雷兹公司的回旋加速器为等离子体提供加热和稳定,这对于达到磁约束核聚变所需的温度至关重要。

Wendelstein 7-X项目是世界上最大、最强大的仿星器之一,旨在增进对等离子体的根本了解,并为商用聚变反应堆的发展做出贡献。泰雷兹公司作为欧洲唯一一家回旋管电子管制造商,其TH1507U回旋管是在欧洲回旋管联盟的合作下开发的,旨在打造一个自主的欧洲高可靠性回旋管来源。

泰雷兹微波与成像子系统副总裁Charles-Antoine Goffin表示:“我们的回旋加速器创下的世界纪录是核聚变竞赛中的一个重要里程碑,展示了我们对技术创新和卓越的承诺。这项技术突破使泰雷兹处于高功率等离子加热解决方案的前沿,对于应对未来的能源挑战至关重要。”

2023年2月,Wendelstein 7-X仿星器产生了创纪录的等离子体,持续8分钟,能量输出为1.3千兆焦耳。之后,仿星器按计划关闭进行维护和改进,包括安装新的回旋加速器。9月,Wendelstein 7-X开始了新的实验活动,继续探索核聚变能源的未来。



推荐阅读

稀有同位素前沿科学中心研究团队在塑料闪烁树脂合成及应用领域取得新进展

在放射性污染监测和废物管理中,如何有效、快速、稳定地处理与检测关键放射性核素是一个重要的科学和技术挑战。针对这一问题,近日,兰州大学核科学与技术学院、稀有同位素前沿科学中心侯小琳教授、史克亮教授团队成功开发出一种可重复多次使用的高稳定塑料闪烁树脂(PSresin),实现对放射性核素锝-99(99Tc)的高效分离与检测。该研究成果在《AdvancedScience》期刊发表(https://doi.org/10.1002/advs.202411523)。塑料闪烁树脂是一类对目标... 2024-11-15

上海交通大学PandaX-4T实验首次捕捉到太阳中微子与氙原子核相干散射的迹象

近日,上海交通大学牵头的PandaX-4T实验(熊猫四吨级液氙实验)利用总曝光时间为259天的数据,以2.64的置信度首次观测到太阳中微子和原子核相干弹性散射的迹象,表明液氙暗物质探测器已经到达了里程碑的灵敏度,也验证了利用相干弹性散射探测低能中微子这一新方式的可行性。研究成果以"First indication of solar 8B neutrinos through coherent elastic neutrino-nucleus scattering in PandaX-4T" 2024-11-15

科学家在跨能量尺度原子核结构研究中取得重要突破

近日,复旦大学马余刚院士团队和纽约州立大学石溪分校贾江涌教授团队合作在RHIC-STAR国际合作组首次基于高能重离子碰撞方法成像原子核结构并取得重要突破。这项突破不仅对研究极端物态夸克胶子等离子体的性质至关重要,还为跨能量尺度研究原子核结构信息提供了新颖和独立的实验测量手段。相关研究成果于北京时间11月7日以Imaging Shapes of Atomic Nuclei in High-Energy Nuclear Collisions(在高能核碰撞中对原子核的形状进行成像)为... 2024-11-15

3D打印技术助力LLNL制造激光聚变靶丸

11月14日,美国劳伦斯利弗莫尔国家实验室(Lawrence Livermore National Laboratory,LLNL)发布消息,其研究人员正利用3D打印技术来制造激光聚变的靶丸,这一应用可能将会有助于未来靶丸的大规模生产。 2024-11-15

首次使用的硼酸制备技术,拿捏了!

2024年11月6日,太平岭核电1号机首次采用了富集硼来制备硼酸。硼酸在核电站中有着非常重要的作用,它可以通过吸收中子来控制发生核反应堆的速度,同时降低一回路材料腐蚀,确保压力边界完整性,确保核电站稳定安全的运行。制硼工作作为装料前的重要一环,其重要性不言而喻,为了提高安全性和稳定性,太平岭核电在以前使用天然硼的基础上进行了改变,首次采用天然硼+富集硼+水的制硼方式,效率大大提升!尽管面临着复杂的系统状态、首堆制硼经验不足等多... 2024-11-14

阅读排行榜
读书| 白玉县| 建宁县| 红原县| 峡江县| 互助| 潼关县| 宜章县| 项城市| 哈密市|